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DynaRail is a specialized rail vehicle dynamics tool developed at CAM (Center for Automated 
Mechanics).  This development is in FORTRAN 95 using quad precision variables. This tool is 
based on the online solving approach. This approach does not need the commonly used 
wheel/rail contact geometry lookup tables. However, the kinematic module in DynaRail is readily 
able to generate the typical wheel/rail contact geometry table that is used by other codes.  The 
track in DynaRail is constructed by analytical and/or measured segments similar to the 
methodology explained in [3]. The mathematical representations for track description are three-
dimensional space curves including grades and vertical curves in vertical plane, which can be 
augmented to the tangents, transitional and constant curves in the horizontal plane. 

  
In DynaRail, like most other programs of this class, the wheels and the rails are assumed to 

have realistic profiled surfaces and all possible contacts between them are assumed non-
conformal or Hertzian. The contacts in DynaRail are modeled as rigid or elastic. The application 
of the rigid contact in DynaRail has been provided in [1]. This reference demonstrates many 
detailed results pertaining to the simulations of free and suspended wheelsets, as well as, a full 
vehicle system traveling on various types of standard analytical and real measured tracks.  
 
REFERENCE FRAMES 

Reference [1] gives a detailed description of most reference frames in DynaRail. The 
reference frames are track and contact based and well familiar to and commonly utilized by the 
practicing railroad engineers. The existence of the global frame {i} in DynaRail separates this tool 
from the other commercially available specialized programs of this class. All track frames are 
defined with respect to {i} as a function of the scalar arc length s, which represents the traveled 
distance. This frame is needed in order to accurately account for all the gravitational vectors due 
to twisting (roll), turning (yaw), rising and falling (pitch) of the track frame as a function of s. The 
relative turning of track with respect to this frame may be large rotation for long traveled distance 
on curves and therefore small angle assumption has not been utilized in any of the transformation 
matrices in DynaRail.  
 
 
GENERALIZED COORDINATES AND FORCES 

The coordinates representing the system configuration are defined by the relative translations 
and relative orientations of the body frame with respect to the track frame. The x, y, z, roll, pitch, 
and yaw are the physically meaningful generalized coordinates and the associated forces and 
moments are the physically meaningful generalized forces in DynaRail [1].These choices make 
the code intentionally the specialized tool and separate it from a general and one size fits all 
philosophy. Otherwise, the same ancient laws of physics are applied in terms of parameters 
which fit the wheel/rail application best. 
 



 
CONTACT SEARCH MODELS 

The rigid contacts in DynaRail fulfill the following definition online [1]. 
 
Definition 1: rigid contact: A point on the profiled surface of the wheel and a point on the 
profiled surface of the rail have a common position in space which belongs to a plane that is the 
common tangent plane of the wheel and the rail at this point. 
 

The rigid contact model is not suitable for the simulation of the LD-benchmarking 
problems. In fact this benchmarking has been the main drive for adding the elastic contact model 
to DynaRail’s library of elements. 
 

For rigid contacts, it is enough to impose the algebraic constraints equivalent to Definition 
1 at position, velocity and acceleration levels [2]. At position level, it means the two bodies 
contact each other without any penetration or separation along the common normal. This method 
with various levels and types of approximation has been implemented (in the form of online and 
offline techniques) in order to find the contact locations for both elastic and rigid wheel/rail contact 
models. This method, based on Definition 1, translates as the rigid search for contacts. The 
online or offline rigid search works as a function of the independent lateral rigid body 
displacement of the wheel relative to the rail. In elastic contacts, because of the elastic 
indentation, the lateral wheelset displacement is a sum of rigid body translation and elastic 
deformation. The scenarios which result in an excessive penetration at contact point (high contact 
angles like flange), the rigid search introduces inaccuracies in the contact determination. This 
inaccuracy was first pointed out by Pascal in the course of simulating the LD_benchmark 
problems. He proposed a quick and robust fix in which the elastic part of the lateral displacement 
(from previous time step) is subtracted from the gross lateral displacement before each search 
without altering the system generalized coordinates. It is worth noting that this fix is the best 
(possibly the only) remedy for the users of the lookup tables. This fix has been validated in 
DynaRail’s online rigid search and the results have been presented to VOLPE, ENSCO, and FRA 
during a telephone conference early January 2006. This validation process intrigued a new and 
rigorous elastic search methodology. This methodology is not suitable for the users of the lookup 
tables since the contact deformation and the wheel elastic motions are not known offline. This 
methodology has been presented to the same group at the same time by CAM. This elastic 
search simultaneously finds the indentation and the contact location between the un-deformed 
and interfered surfaces of the wheel and the rail as required by the elastic contact model. 
 
Definition 2: elastic contact: A point on the profiled surface of the wheel and a point on the 
profiled surface of the rail along a common normal vector are in elastic contact if and only if the 
normal vector represents the only vector of local maximum indentation between the two interfered 
surfaces, Figure 1.  
 
 This method is introduced by a set of algebraic relations that simply ensure fulfilling 
Definition 2 between two profiled surfaces at any given relative yaw rotation. 
 



 
 
 
Considering Figure 1, one can arrive at the following constraint equations (1) and (2) to guarantee 
the proposed solution. Equation (1) is a loop vector equation and equation (2) is the in plane 
alignment equation which together fulfill Definition 2. 
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Clearly, the loop equation together with the alignment condition guarantee the indentation vector 
originating from the rail at point prail must be along (not just parallel) to the wheel normal at point 
pwheel, . If this does not happen, the loop does not close (violation of equation 1). These relations 
also signify that the magnitude of the indentation vector is always a local (relative) extrema since 
it is along the common normal (minimum separation or maximum indentation). 
 
Since all vectors are in track frame, the rotation matrices in the above equations are skipped for 
clarity. At each time step, all the rotation matrices are known and treated as constants in solving 
these algebraic relations.  Where; 
 

railR
r

=The position of a point rigidly attached to the rail. 
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=The position of a point rigidly attached to the wheel. 
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=The position vector of the contact point which is a function of the contact position, Srail. 
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=The position vector of the contact point which is a function of the contact position, 
Swheel.  

railnr =The unit normal vector at rail point of contact, which is a function of contact location Srail. 

wheelt
r

=The in-plane unit tangent vector at wheel point of contact, which is a function of contact 
location Swheel. 
I = The magnitude of maximum indentation or minimum separation.  
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Figure 1. Profile interference representing elastic contact at any 
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The vector equations 1 and 2 are three algebraic equations in three unknowns; Swheel, Srail, 

and I , which can be solved using Newton-Raphson iterations. These algebraic relations can be 
applied between the contacting surfaces at each time step for as many times as possible 
(depending on the number of predetermined singularities in the profiles). The solution can be 
achieved for cases with penetration, osculation or even separation. This is the reason that 
achieving online solution for elastic contact is far easier than rigid contact for the later requires 
zero indentation or osculation only.  

 
Once the contact location and the indentation are determined, the elastic contact is 

imposed by solving the Hertzian problem online for the resulting elastic force and contact size.  
This approach is currently implemented in DynaRail, which has been used to produce the results 
for the LD_benchmark problems.  
 
Comparison to the recent work by Pombo and Ambrosio 

The problem in Figure 1 is described in 2-D since it shows the profiles at a given yaw 
rotation. In its 3-D equivalence, one can simply regard equation (1) as a 3-D vector and add 
another alignment equation like equation (2) in out of plane direction [2]. After converting to 3-D 
representation, by dot producting once the in plane and next the out of plane tangent vectors by 
equation (1) then the resulting two scalar equations together with the two alignment equations are 
exactly the same four scalar equations of equation (7) in Reference 3. These dot products 
eliminate the indentation vector from equation (1). Doing so, the ability to solve, for the contact 
locations and the indentation simultaneously, will be lost. Other than this loss, the elastic search 
method as proposed here is equivalent to the approach presented in Reference 3 or equivalently 
implemented in Samsrail as marker 44. 
 
Concluding Remarks 

Most codes with elastic contact model rightfully use the Hertz contact theory. The elastic 
wheel/rail contact model using this theory was first practiced by Kik and Pascal many years ago.  
 

The major differences among codes with elastic contacts still remain in the accuracy at 
which the contact locations and the elastic deformations (or indentations) are determined. By 
applying the Hertz theory (which is merely borrowing a historic solution), the elastic contact can 
be successfully implemented in few lines of coding.  
  

On the other hand, due to various kinematic and dynamic simplifications, the major 
differences among codes with rigid contact are much more complex than codes with Hertzian 
elastic contact. But, regardless of rigid or elastic contact, the common and most important issues 
still remain as the locations, the shapes and the sizes of contacts and the accuracy at which 
these are determined. 
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